Tip Sheet: Supervised Skill/Capability in Practice

Description

This assessment type involves evaluating students' ability to demonstrate skills or professional behaviours in authentic or simulated practice environments. These tasks are usually conducted **in situ** (e.g. during placement or fieldwork) or through structured **simulations** that mirror real-world challenges.

Examples include:

- **Placement checklist**: Supervisor observes and assesses student performance against a structured set of competency indicators (e.g. professional conduct, communication, technical skills).
- **Fieldwork competency**: Students demonstrate techniques, reasoning, or ethical decision-making in a field-based or community context.
- **Simulation**: Students engage in controlled, practice-based scenarios (e.g. patient interactions, emergency response, client interviews) with assessors observing or reviewing performance.

These assessments are typically supervised directly by educators, workplace supervisors, or trained simulation facilitators.

Best Suited Learning Outcomes

This assessment type is appropriate for outcomes related to:

- Demonstrating discipline-specific practical skills
- Exhibiting professional and interpersonal behaviours in applied contexts
- Making decisions in complex, real-time environments
- Applying theory in ways that are responsive to context and constraints
- Performing ethical, safe, and reflective practice
- Adapting to **real-world uncertainty**, **ambiguity**, **and interpersonal dynamics**

Learning Design Considerations

Designing for practice-based assessment involves particular attention to preparation, reliability, and equity:

- Validity:
 - Ensure that assessment tasks reflect actual or expected professional practice.
 - $\circ~$ Use frameworks or professional standards to define competencies being assessed.
- Scaffolding:
 - $\circ~$ Include skill rehears als, case-based learning, or low-stakes simulations early in the unit or course.
- Transparency:
 - Provide clear criteria for how performance will be judged (e.g. observation rubrics, competency indicators).
- Reliability:
 - Use structured tools (e.g. standardised checklists or rating scales).

• Supplement supervisor assessments with student self-assessment or reflection to triangulate data.

Integrating Generative AI into the Task

While live performance and interpersonal judgment are the focus of this task type, GenAI can be integrated as part of **preparation**, **planning**, or **post-assessment reflection**.

Examples include:

- A **social work student** uses GenAI to draft a case note or client support plan, then presents it during supervision for discussion and refinement.
- A **biomedical science student** uses GenAI to help model potential impacts of a field intervention and then explains its relevance during a fieldwork review.
- A **paramedicine student** runs a simulation debrief using AI-generated vitals or scenario variations and reflects on the clinical reasoning involved.
- An **education student** prepares a placement lesson plan using AI and discusses their adaptations to suit the real classroom context during observation feedback.

These tasks should prompt students to explain:

- How and why they used AI
- What professional judgment or adaptation was required
- Any limitations or concerns they encountered in relying on AI-generated outputs

This encourages ethical, context-sensitive AI use, which is especially important in regulated and high-stakes professions.

Resourcing Considerations

- Staffing and supervision:
 - May require coordination with external placement partners or professional assessors.
 - \circ Supervisors need induction into the assessment tool and process.
 - Dual marking or moderation may be needed for consistency.
- Assessment tools:
 - Structured checklists, rubrics, or logs are essential for reliable scoring.
 - Digital platforms can help manage data collection, student reflections, and supervisor feedback.

• Simulation resources:

- Access to trained facilitators, scenario scripts, space, and sometimes actors or standardised clients.
- Simulation software or recordings may support debriefing and moderation.
- AI integration:
 - Any GenAI tools used must be accessible, ethically appropriate, and discipline-aligned.
 - Ensure students understand relevant professional expectations around confidentiality and data integrity when using AI in applied contexts.